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The fundamental definition of an error-correcting code

Encoding channel Enc
= Message space: CX where K = ¢*

= Codespace: a subspace of dim K in C" (the image of an encoding isometry V: C* — C")
where N = g"

= Enc:p - VpVt
Noise channel V'

Decoding channel/algorithm Dec

Exact QEC: Deco NV o Enc = Id
Approximate QEC: ||Deco N o Enc —Id||, < 6

® § is called the disturbance of the code




The fundamental question

Question 1.1.1. How much redundancy|do we need to|correct a given amount of errors?|(We
would like to correct as many errors as possible with as little redundandy as possible.)

Essential Coding Theory v v
by Guruswami, Rudra, Sudan K Or rate = k distance

= What is the optimal tradeoff between “rate” and “distance”?

A code with Can correct Can correct
distanced =2t + 1

Classical EC any error on at most ¢t bits/blocks

any noise channel that acts on at most t qudits

any erasure error of weight < 2t OR

Exact QEC : .
Q any noise channel whose Kraus operators are in

span{P: P is a Pauli of weight < t}

= What does this tradeoft look like in AQEC?



The Hamming bound

= Consider a classical EC that encodes k blocks into n blocks
= each block has local dimension g: N = ¢™, K = g*

= has distance d = 2t + 1: can correct any error on at most ¢ blocks

= Letm = Zfzo(’z) (g — 1)! be the number of errors

= Volume of a Hamming ball with radius ¢ "
» The Hamming bound: mK < N )
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The quantum Hamming bound

= Consider an exact QEC that encodes k qudits into n qudits

= Jocal dimension g: N = q"*, K = g*

= has distance d = 2t + 1: can correct any Pauli errors of weight at most ¢
= Letm = Yi_o(") (¢* — 1)" be the number of errors

= The number of Pauli operators of weight at most ¢

= If the code is nondegenerate, then mK < N

= In some parameter regime: quantum Singleton bound is strictly stronger than
quantum Hamming bound

= So far, it is not known whether there exist degenerate exact QECs that can beat
quantum Hamming bound



Haar random codes attain the quantum Hamming bound, approximately

R Classical EC Exact QEC AQEC

Hamming bound: Quantum Hamming bound (for =~ Same quantum Hamming
mK < N nondegenerate codes): bound

« N=q“K=qg* mK <N

+ m=%f,(q- D" * N=q"K=q"
Upper bound + m=Xi(q? - 1)f
(what is NOT  Singleton bound: Quantum Singleton bound: There exist AQECs that

achievable) t<(n—k)/2 t<(n—k)/4 beat quantum Singleton
bound by a lot!
. [Leung, Nielsen, Chuang, Yamamoto ‘97]
In some parameter regime: [Crépeau, Gottesman, Smith 'os]

[Bergamaschi, Golowich, Gunn ’24]

(quantum) Hamming bound is impossible to attain
because (quantum) Singleton bound is strictly stronger

Lower bound Gilbert-Varshamov bound  Quantum Gilbert-Varshamov What about Haar random
(what is by random codes and bound by random stabilizer codes codes?
achievable) random linear codes and random CSS codes

(do NOT saturate the best known upper bounds)



How to define the “distance” of an AQEC?

» An exact QEC with distance d = 2t + 1 means that it can correct

= any erasure errors of weight < 2t

= | any noise channel that acts on at most t qudits

= any noise channel whose Kraus operators are in span{P: P is a Pauli of weight < t}

= Quantum singleton bound: #erasures < (n — k)/2

= Because the three error models are equivalent: t < (n — k) /4

= There are AQECs that can correct any noise channel thatactson (n — k — an)/2
qU.dltS' [Crépeau, Gottesman, Smith 'o5]

" m—k—an)/2> n—-k)/4
s qudit has local dimension O (1/a>) [Bergamaschi, Golowich, Gunn 24]

= Haar random codes are optimal in all three error models above (and more
general ones) by showing that they approximately saturate the corresponding
quantum Hamming bound.



A promising candidate: Haar random codes

= Codespace: a Haar random subspace of dim K in CV

= Let V:CK - CM be a Haar random isometry and write V = Y1, |v;){i|

= {|vy),...,|vk)} is an orthonormal basis for the codespace

= [ntuition 1: random codes are known to have good behaviors
= (Quantum) Gilbert-Varshamov bound

= Shannon’s noisy coding theorem

= [ntuition 2:a Haar random state is close to being maximally entangled.



K qk

= Forany integers m, K, N > 0 satisfying § := 3(y/mK/N + C/m(log N)3/N) < 1.

-n(1-r)

= Forany set of unitary matrices {Ey, ..., E;; } such that Tr(EiTEj) = 0 fori #j.
= Let V:CX - C" be a Haar random isometry and Enc(p) = VpVT.

= With probability at least 1 — 2/N 08N )* there exists a decoding channel Dec such
that |[Dec o IV o Enc — Id||, < 26 for any noise channel V' with Kraus operators in
span{Ey, ..., E.,}.

= Haar random codes are optimal among nondegenerate AQECs.

= AQEC significantly outperforms exact QEC over a wide range of parameter regime.



= Encoding isometry V: CX — CN where V = Y1, |v; )]

= {|vy), ..., |vk)} is an orthonormal basis for the codespace
= Error: A set of unitary matrices {Ej, ..., E;;;} such that Tr(E;rEj) =0 fori #j.

= The code can perfectly decode any error in span{Ej, ..., E,;} if

{E |v])} ml.jclk] is orthonormal

= Apply D = Yicimijerx U N ET. SoD:EiIv,-> - |j, i)

= Trace out the second register holding |i)

= The code can approximately decode any error in span{Fj, ..., E,,;} if

{E |v )} ml.jelK] is approximately orthonormal ptisan

approximate
= D = Yietmljex U IXY) |E] can be rounded to a physically allowed operation isometry

Py




The decoding algorithm

= {|vy), ..., |vg)} is an orthonormal basis for the codespace
= {E,, ..., E,} is a set of unitary and orthogonal errors
= The code can approximately decode any error in span{Ej, ..., E;,} if

{Ei - |vj>}ie[m],je[K] is approximately orthonormal

= Consider the singular value decomposition of

D = z j, iNy |Ef = U, - £ U,
i€[m],j€[K]

DT isan
= [fall singular values are between 1 —§dand 1 + 6 forsome 0 <6 < 1 §-approximate
= Replace all singular values in £ with 1 and call it X isometry

= ThenD := U, - X - U, is a physically allowed operation



A prootf of two components

Theorem 1: Suppose

+
Do FV ® 4 (Z,j'f WIVTE) =(Q, UwIE,

is a 6-approximate isometry for some 6 € [0,1).

.I_

Then the decoder defined by rounding all singular values to 1 satisfies ||Dec o V' o
Enc — Id||, < 26 for any noise channel V' with Kraus operators in span{£j, ..., E,,,}.

Theorem 2: For any integers m, K, N > 0 satistying ¢ := 3( mK/N +
cym(log N)3/N) < 1. Let V: C¥ > CV be a Haar random isometry. Then

z E;V ® (il is a 6-approximate isometry| > 1 — 2/N{0gM)*

ie[m],jelK

V~Haar [



Approximate isometry from Gaussian random matrix

= Let G denote a N X K matrix where each entry is an independent complex
Gaussian random variable with mean 0 and variance 1/N.

= G behaves similarly to a Haar random isometry V

= Lemma 3: The SVD of G =@' ) @ mm) |WUisa N X K Haar random

N X K Haar random N x N Haar randoilg@mtetry
isometry

" Lemma 4: Yerm) jerx) EiG @ (i] is a §-approximate isometry for some § € [0,1)
1 Let V = isometrize(G) =
o U. : :
Yielml,jelx) EiV @ (il isa 25)/&/1 = §)-approximate isometry.

= L ;
SIS by E;G ® (il is a 5—approximate isometry| = 1 — 2/N(og M)*

G~Gaussian

Le[m],J'E[K]

/ 3
Proved using the Gaussian concentration inequalities / where § < ( mK /N + C/m(log N)*/N )
developed in [Bandeira, Boedihardjo, van Handel ’23]




Summary

= Haar random codes approximately attain the quantum Hamming bound in a
wide range of parameter regimes.

= So Haar random codes are optimal among nondegenerate AQECs.

= For exact QEC in some parameter regimes, quantum Hamming bound is strictly
not attainable.

= So AQEC outperforms exact QEC.
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