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The fundamental definition of an error-correcting code

 Encoding channel Enc

 Message space: ℂ𝐾 where 𝐾 = 𝑞𝑘

 Codespace: a subspace of dim K in ℂ𝑁 (the image of an encoding isometry 𝑉: ℂ𝐾 → ℂ𝑁) 
where 𝑁 = 𝑞𝑛

 Enc: 𝜌 ↦ 𝑉𝜌𝑉†

 Noise channel 𝒩

 Decoding channel/algorithm Dec

 Exact QEC: Dec ∘ 𝒩 ∘ Enc = Id

 Approximate QEC: Dec ∘ 𝒩 ∘ Enc − Id ⋄ ≤ 𝛿

 𝛿 is called the disturbance of the code

AQEC

Exact 
QEC

Classical 
EC



The fundamental question

 What is the optimal tradeoff between “rate” and “distance”? 

Essential Coding Theory 
by Guruswami, Rudra, Sudan 𝐾

𝑁
  or rate =

𝑘

𝑛
 distance

A code with 
distance 𝒅 = 𝟐𝒕 + 𝟏

Can correct Can correct 

Classical EC

any erasure error of weight ≤ 2𝑡

any error on at most t bits/blocks

Exact QEC

any noise channel that acts on at most t qudits
OR

any noise channel whose Kraus operators are in 
span{𝑃: 𝑃 is a Pauli of weight ≤ 𝑡}

 What does this tradeoff look like in AQEC? 



The Hamming bound

 Consider a classical EC that encodes k blocks into n blocks 

 each block has local dimension q: 𝑁 = 𝑞𝑛 , 𝐾 = 𝑞𝑘

 has distance 𝑑 = 2𝑡 + 1: can correct any error on at most t blocks

 Let 𝑚 = σ𝑖=0
𝑡 𝑛

𝑖
𝑞 − 1 𝑖 be the number of errors

 Volume of a Hamming ball with radius t

 The Hamming bound: 𝑚𝐾 ≤ 𝑁

Algebraic Coding Theory
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𝑅 =
𝑘

𝑛
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The quantum Hamming bound

 Consider an exact QEC that encodes k qudits into n qudits

 local dimension q: 𝑁 = 𝑞𝑛 , 𝐾 = 𝑞𝑘

 has distance 𝑑 = 2𝑡 + 1: can correct any Pauli errors of weight at most t

 Let 𝑚 = σ𝑖=0
𝑡 𝑛

𝑖
𝑞2 − 1 𝑖 be the number of errors

 The number of Pauli operators of weight at most t

 If the code is nondegenerate, then 𝑚𝐾 ≤ 𝑁

 In some parameter regime: quantum Singleton bound is strictly stronger than 
quantum Hamming bound

 So far, it is not known whether there exist degenerate exact QECs that can beat 
quantum Hamming bound



Haar random codes attain the quantum Hamming bound, approximately

Classical EC Exact QEC AQEC

Upper bound 
(what is NOT 
achievable)

Hamming bound: 
𝑚𝐾 ≤ 𝑁

• 𝑁 = 𝑞𝑛, 𝐾 = 𝑞𝑘

• 𝑚 = σ𝑖=0
𝑡 𝑞 − 1 𝑡

Quantum Hamming bound (for 
nondegenerate codes): 

𝑚𝐾 ≤ 𝑁

• 𝑁 = 𝑞𝑛, 𝐾 = 𝑞𝑘

• 𝑚 = σ𝑖=0
𝑡 𝑞2 − 1 𝑡

Same quantum Hamming 
bound

Singleton bound: 
𝑡 ≤ (𝑛 − 𝑘)/2

Quantum Singleton bound: 
𝑡 ≤ 𝑛 − 𝑘 /4

There exist AQECs that 
beat quantum Singleton 
bound by a lot! 

In some parameter regime: 
(quantum) Hamming bound is impossible to attain 
because (quantum) Singleton bound is strictly stronger

Lower bound
(what is 

achievable)

Gilbert-Varshamov bound 
by random codes and 
random linear codes

Quantum Gilbert-Varshamov 
bound by random stabilizer codes 
and random CSS codes

What about Haar random 
codes? 

[Leung, Nielsen, Chuang, Yamamoto ‘97]
[Crépeau, Gottesman, Smith ’05]
[Bergamaschi, Golowich, Gunn ’24]

(do NOT saturate the best known upper bounds)



How to define the “distance” of an AQEC?

 An exact QEC with distance 𝑑 = 2𝑡 + 1 means that it can correct

 any erasure errors of weight ≤ 2𝑡

 any noise channel that acts on at most t qudits

 any noise channel whose Kraus operators are in span 𝑃: 𝑃 is a Pauli of weight ≤ 𝑡

 Quantum singleton bound: #erasures ≤ (𝑛 − 𝑘)/2

 Because the three error models are equivalent: 𝑡 ≤ (𝑛 − 𝑘)/4

 There are AQECs that can correct any noise channel that acts on (𝑛 − 𝑘 − 𝛼𝑛)/2 
qudits! [Crépeau, Gottesman, Smith ’05]

 (𝑛 − 𝑘 − 𝛼𝑛)/2 > (𝑛 − 𝑘)/4

 qudit has local dimension 𝑂(1/𝛼5) [Bergamaschi, Golowich, Gunn ’24]

 Haar random codes are optimal in all three error models above (and more 
general ones) by showing that they approximately saturate the corresponding 
quantum Hamming bound. 



A promising candidate: Haar random codes

 Codespace: a Haar random subspace of dim 𝐾 in ℂ𝑁

 Let 𝑽: ℂ𝐾 → ℂ𝑁 be a Haar random isometry and write 𝑽 = σ𝑖=1
𝐾 |𝒗𝑖⟩⟨𝑖|

 𝒗1 , … , |𝒗𝐾⟩  is an orthonormal basis for the codespace

 Intuition 1: random codes are known to have good behaviors 

 (Quantum) Gilbert-Varshamov bound

 Shannon’s noisy coding theorem

 Intuition 2: a Haar random state is close to being maximally entangled. 



Main Theorem

 For any integers 𝑚, 𝐾, 𝑁 > 0 satisfying 𝛿 ≔ 3 𝑚𝐾/𝑁 + 𝐶 𝑚 log 𝑁 3/𝑁 < 1.

 For any set of unitary matrices {𝐸1, … , 𝐸𝑚} such that Tr 𝐸𝑖
†𝐸𝑗 = 0 for 𝑖 ≠ 𝑗.

 Let 𝑽: ℂ𝐾 → ℂ𝑁 be a Haar random isometry and Enc 𝜌 = 𝑽𝜌𝑽†.

 With probability at least 1 − 2/𝑁 log 𝑁 2
, there exists a decoding channel Dec such 

that Dec ∘ 𝒩 ∘ Enc − Id ⋄ ≤ 2𝛿 for any noise channel 𝒩 with Kraus operators in 
span 𝐸1, … , 𝐸𝑚 .

 Haar random codes are optimal among nondegenerate AQECs. 

 AQEC significantly outperforms exact QEC over a wide range of parameter regime. 

𝐾

𝑁
=

𝑞𝑘

𝑞𝑛 = 𝑞−𝑛(1−𝑟)



Proof idea

 Encoding isometry 𝑉: ℂ𝐾 → ℂ𝑁 where 𝑉 = σ𝑖=1
𝐾 |𝑣𝑖⟩⟨𝑖|

 𝑣1 , … , |𝑣𝐾⟩  is an orthonormal basis for the codespace

 Error: A set of unitary matrices {𝐸1, … , 𝐸𝑚} such that Tr 𝐸𝑖
†𝐸𝑗 = 0 for 𝑖 ≠ 𝑗.

 The code can perfectly decode any error in span{𝐸1, … , 𝐸𝑚} if

𝐸𝑖 ⋅ 𝑣𝑗 𝑖∈ 𝑚 ,𝑗∈ 𝐾
 is orthonormal

 Apply 𝐷 = σ𝑖∈ 𝑚 ,𝑗∈[𝐾] |𝑗, 𝑖⟩⟨𝑣𝑗|𝐸𝑖
†. So 𝐷: 𝐸𝑖 𝑣𝑗 ↦ |𝑗, 𝑖⟩

 Trace out the second register holding |𝑖⟩

 The code can approximately decode any error in span{𝐸1, … , 𝐸𝑚} if

𝐸𝑖 ⋅ 𝑣𝑗 𝑖∈ 𝑚 ,𝑗∈ 𝐾
 is approximately orthonormal

 ෡𝐷 = σ𝑖∈ 𝑚 ,𝑗∈[𝐾] |𝑗, 𝑖⟩⟨𝑣𝑗|𝐸𝑖
† can be rounded to a physically allowed operation

𝐷† is an isometry

෡𝐷† is an 
approximate 

isometry



The decoding algorithm

 𝑣1 , … , |𝑣𝐾⟩  is an orthonormal basis for the codespace

 {𝐸1, … , 𝐸𝑚} is a set of unitary and orthogonal errors

 The code can approximately decode any error in span{𝐸1, … , 𝐸𝑚} if

𝐸𝑖 ⋅ 𝑣𝑗 𝑖∈ 𝑚 ,𝑗∈ 𝐾
 is approximately orthonormal

 Consider the singular value decomposition of 

෡𝐷 ≔ ෍

𝑖∈ 𝑚 ,𝑗∈[𝐾]

|𝑗, 𝑖⟩⟨𝑣𝑗|𝐸𝑖
† = 𝑈1 ⋅ ෠Σ ⋅ 𝑈2

 If all singular values are between 1 − 𝛿 and 1 + 𝛿 for some 0 ≤ 𝛿 < 1

 Replace all singular values in ෠Σ with 1 and call it Σ

 Then D ≔ 𝑈1 ⋅ Σ ⋅ 𝑈2 is a physically allowed operation

෡𝐷† is an 
𝛿-approximate 

isometry



A proof of two components

Theorem 1: Suppose

෍
𝑖∈ 𝑚 ,𝑗∈ 𝐾

𝐸𝑖𝑉 ⊗ 𝑖 = ෍
𝑖,𝑗

|𝑗, 𝑖⟩⟨𝑗|𝑉†𝐸𝑖
†

†

= ෍
𝑖,𝑗

|𝑗, 𝑖⟩⟨𝑣𝑗|𝐸𝑖
†

†

is a 𝛿-approximate isometry for some 𝛿 ∈ [0,1). 

Then the decoder defined by rounding all singular values to 1 satisfies ԡ
ԡ

Dec ∘ 𝒩 ∘
Enc − Id ⋄ ≤ 2𝛿 for any noise channel 𝒩 with Kraus operators in span 𝐸1, … , 𝐸𝑚 .

Theorem 2: For any integers 𝑚, 𝐾, 𝑁 > 0 satisfying 𝛿 ≔ 3൫

൯

𝑚𝐾/𝑁 +

𝐶 𝑚 log 𝑁 3/𝑁 < 1. Let 𝑽: ℂ𝐾 → ℂ𝑁 be a Haar random isometry. Then

Pr
𝑽∼Haar

෍

𝑖∈ 𝑚 ,𝑗∈ 𝐾

𝐸𝑖𝑽 ⊗ 𝑖 is a 𝛿−approximate isometry ≥ 1 − 2/𝑁 log 𝑁 2



Approximate isometry from Gaussian random matrix

 Let 𝑮 denote a 𝑁 × 𝐾 matrix where each entry is an independent complex 
Gaussian random variable with mean 0 and variance 1/𝑁.

 𝑮 behaves similarly to a Haar random isometry 𝑽

 Lemma 3: The SVD of 𝑮 = 𝑾 ⋅ 𝚺 ⋅ 𝑼

 Lemma 4: σ𝑖∈ 𝑚 ,𝑗∈ 𝐾 𝐸𝑖𝐺 ⊗ 𝑖  is a 𝛿-approximate isometry for some 𝛿 ∈ [0,1)

        σ𝑖∈ 𝑚 ,𝑗∈ 𝐾 𝐸𝑖𝑉 ⊗ 𝑖  is a 2𝛿/(1 − 𝛿)-approximate isometry. 

 Lemma 5:

𝑁 × 𝐾 Haar random 
isometry 

𝑁 × 𝑁 Haar random unitary 

Let 𝑉 = isometrize 𝐺 =
𝑊𝑈.

where 𝛿 ≤ 𝑚𝐾/𝑁 + 𝐶 𝑚 log 𝑁 3/𝑁

Pr
𝑮∼Gaussian

෍

𝑖∈ 𝑚 ,𝑗∈ 𝐾

𝐸𝑖𝑮 ⊗ 𝑖 is a 𝛿−approximate isometry ≥ 1 − 2/𝑁 log 𝑁 2

Proved using the Gaussian concentration inequalities 
developed in [Bandeira, Boedihardjo, van Handel ’23]

𝑾𝑼 is a 𝑁 × 𝐾 Haar random 
isometry 



Summary

 Haar random codes approximately attain the quantum Hamming bound in a 
wide range of parameter regimes. 

 So Haar random codes are optimal among nondegenerate AQECs. 

 For exact QEC in some parameter regimes, quantum Hamming bound is strictly 
not attainable.

 So AQEC outperforms exact QEC. 
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