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Two fundamental quantum learning theoretic tasks

Given n samples/copies of an unknown d-dim mixed state p

with spectrum a = (a4, a5, ..., ag) (sorted eigenvalues)

State tomography Spectrum estimation

* obtain an estimate p such * obtain an estimate @ such

that ||p — pll1 < € ‘ that dpy(a, @) < €

_ = Purity of a state tr(p*?)

?
Why do we care about the spectrum = Shannon and Rényi Entropy

= Unitarily invariant properties: <4 Entanglement entropy of a

bipartite pure state




Sample complexity

How big can n be? gld,e) <n<f(de)

= Upper bound: give an algorithm that uses n = f(d, €) samples

®* (QQuantum circuits + measurements

= (lassical post-processing using the measurement outcomes

= Lower bound: prove that no algorithm can learn the task with
fewer than n = g(d, €) samples



Measurements

= Fully entangled measurements

= Unentangled (single-copy) measurements

= Adaptive vs non-adaptive algorithms

= Uniform POVM: {d|u){u| - du} where du is the Haar measure over pure states |u) € C4

d - Ejyy~Haar|uXu| =1

Uniform POVM tomography algorithm

= Measure each copy of p with the
uniform POVM {d|u){u| - du}

= Set Pi = (d + 1) . |ui)(ui| — [ where
|lu;) is the i-th measurement outcome

~ 1
= Outputp =—(py + -+ py)

Theorem [Krishnamurthy and Wright,
3
GKKT20]: ||p — plly < €ifn =0 (d—)

=2




What's known so far

= We can always use a state tomography algorithm to learn its spectrum:

= |lp—Pll; < €= dry(a, @ = eigenvalues(p)) < €

= Can we do better than full state tomography?

_ Unentangled Fully entangled

d3 d?
State tomography 0= Ol —=
€ [KRT14,CHL+23] € [OWi15,16]

. . d3/2 d
Spectrum estimation Q (?> [CHLL22] 9) (3) [OWis5]

Mixedness testing: Test if a state is maximally mixed, i.e. with

spectrum (% R %), or e-far from I;/d



Main results on spectrum estimation

_ Unentangled Fully entangled
d 2
(&)

. . d3 /2 d
Spectrum estimation Q ( > 0 ( )

d3
State tomography ] (—)

(previously known) €2

2-y
Spectrum estimation , (loglog(d) 1 Qd*") for any constanty > 0
ol|d°- (we give numerical evidence for

It €6
{ourealie) log(d) € constant €)
An adaptive algorithm that Spectrum learning can only
uses asymptotically fewer improve over full state tomography

samples in large e-regime by a sub-polynomial factor



Next

= Part I: Motivation and main results

= Part II: The classical analogue
= The idea of (global) moment matching and why it fails

= Local moment matching

= Part III: The quantum case



The classical analogues

= The spectrum «a of p can be viewed as a probability distribution

= Leta = (ay, ..., aq) be an unknown (unsorted) distribution

= Jtem i is sampled with probability «;

L. Learn the
Learn the distribution « distribution = sor@)
 obtain an estimate @ such  obtain an estimate @>
that dpy(a, @) < € such that dpy (o=, @%) < €

» State tomography  Spectrum estimation



ldea: Matching moments

= Leta = (ay, ..., aq) be an unknown (unsorted) distribution.

—0@ 00 @ ® I
0 agay As 0y Ay Qy a3 1

= The k-th moment of a: py(a): = ?:1 af‘

— @ Obtain estimates P, for the first K moments:
Moment

matching = Dr =~ pr (), forall k € [K]

— @ Solve for a distribution @ with matching moments:

pr (@) = Py, forall k € [K]

= Formally: a feasibility linear program



Why global moment matching fails

1

= Uniformity testing: distinguish a = (—, ...,%) or ff = (%, ..,—,0, ...,O)

d

= Given n samples {x;};¢[,] drawn from y, output eithery = a ory = 8

Standard algorithm: estimate p,(y)

: : 1 . .
Standard unbiased estimator ¢, = EZK j 1[x; = x;] (collision statistics)
2

Forbothy = aandy = f:
" p2(¥) =0 (%)

" |p2(@) —p2(B)| =6 (%)

= Var(c;) = 0 () is small

Hencen = 0(V/d)

New Task:

1 1 1 1
" a=|-,=,.,=) VS b = —,—,...,—,O,...,O)
(2 2d Zd) '8 (2 d d

= p,(y) =0(1)and Var(cp) = 0 (%) is much bigger.

" |p2(@) —p(B) = 0)
= Hencen = 0(d?)




Why global moment matching fails

e The moments are dominated = Alternatively, use O(1) samples to learn the
by large values, and they tend index { € [d] for which y; = %
to “wash Ol_lt the small Vahl.es' = Then, use O(v/d) samples to test if y is
 But capturing low-probability uniform on d /{i}.
elements is important for T
estimating in TV distance.
New Task:

1 1 1 1
" a=|-,=,.,=) VS b = —,—,...,—,O,...,O)
(2 2d Zd) '8 (2 d d

= p,(y) =0(1)and Var(cp) = 0 (%) is much bigger.

Ip2(a) — p2(B) = 05)
= Hencen = 0(d?)




Solution: local moment matching [HJW18]

= Step 1: Bucketing

= Draw n samples according to a. Denote the empirical distribution as p.

= Assign items to two buckets based on p:
Small := {i € [d]:p; € [0,B)} and
= Directly output p; for i € Large

Requirements

Large :={i € |[d]: p; € |B, 1]}

Threshold B

\lf

Small bucket Large bucket A
00 @ o >
PeD1 Ps D ﬁD’\ D4 D3 )
1,2,5,6,7 € Small 3,4 € Large

The small eigenvalues are classified into
the small bucket:

Small = {i € [d]: p; € [0, (1 + €)B)}

The large eigenvalues are accurately learned:

2 lp;i — Dil <€

i€Large



Solution: local moment matching [HJW18]

= Step 2: local moment matching on the small bucket

= Draw another n samples according to . Denote the empirical distribution as .

= Use {f8;:i € Small} to obtain moment estimates

= Find a (subnormalized) distribution on [0, B) that matches the moment estimates P,

Overall, after setting K
and B appropriately,
the sample complexity:

n=0 (log(j) - e4>

Dr = Yicsman @F on the small bucket

Threshold B
Small bucket
b o090 o
BsP1 Bs B 7k B

D 4

ignore

VR

v



Next

= Part I: Motivation and main results

= Part II: The classical analogue

= Part III: The quantum case
= Bucketing

= Multiplicative-error moment estimation



Step 1: Bucketing

@ Use n copies of p to learn a projective measurement {I1,I1 = [ — I1}

= I (I) projects onto the large (small) eigenvalues of p

€© Measure another n copies with {I1, IT}

= Receiving I1 (I) outcome is as if we are sampling from the large (small) part of spectrum «

= ie.pw [pIl + [plIl

Uniform POVM tomography algorithm

= Measure each copy of p with the
uniform POVM {d|u){u| - du}

= Set Pi = (d + 1) . |ul-)(ul-| — [ where
|u;) is the i-th measurement outcome

~ 1
= Outputp = —(py + -+ py)

= Perform the uniform POVM tomography
algorithm using n copies of p and obtain p

Bucketing algorithm

= Writep=U-a-U"

= OQutputll=U- (JIX1| + -+ |kXk]) - UT

G, == @= B> @y = = Gy




Step 1: Bucketing

@ Use n copies of p to learn a projective measurement {I1,I1 = [ — I1}

= I (I) projects onto the large (small) eigenvalues of p

\

The large eigenvalues are accurately learned
= dyy(spec(p)<k, spec(P)<k) < €

The small eigenvalues are classified into the
small bucket

= |[TpMllep < (1+€)B
The full spectrum is not much disturbed

= dry(spec(p), spec(Tlpll + Ipll)) < €

Bucketing algorithm

= Perform the uniform POVM tomography
algorithm using n copies of p and obtain p

= Writep=U-&- Ut
[ | &122&k23>&k+122&d

= OutputIl = U - (|OXO| + -+ |k)k]) - UT

_o(E. (loa@ *
EventuallYWe set B =0 (d (loglog(d)) )

Theorem: The bucketing algorithm
satisfies the green requirements when

n = 0(dB %e™?)




Step 2: local moment matching on the small bucket

@ Use n copies of p to learn a projective measurement {I1,I1 = [ — I1}

= I (I) projects onto the large (small) eigenvalues of p

€© Measure another n copies with {I1, IT}

= Receiving I1 (I) outcome is as if we are sampling from the large (small) part of spectrum «

= je.p — llpll +

=: 0 (a subnormalized quantum state)

= Bucketing = ||gllop < (1 +€)B

© Use copies of o to obtain “good” estimates for the moments tr(c*) for k € [K]

@ perform local moment matching using the moment estimates



Side results on moment estimation

k-th moment estimator

uniform POVM

= Output =

= Additive error: t

® Measure each co

y of p with the
{dlu)ul - du)

= Setp; = (d+1)- || — I where
|lu;) is the i-th measurement outcome

1

nn—1)--n—k+1)

r(p*) £ 6

d? 2/k d3 2/k
= Multiplicative error: (1 + &) - tr(p®) O(max{ 52 ' s2/k })

z tr(pi, pi, ** Piy)

distinct iq,iy,...IxE[N]

Theorem: Z; can estimate tr(pk)
to multiplicative error § using

copies of p.




Additive-error Rényi entropy estimation

= The quantum Rényi entropy of order k: S, (p) = ﬁlog tr(p®)

d-multiplicative 0-additive error

error approximation approximation for
for tr(p*) Sk (p)

Fully entangled Unentangled (our results)

dl-1/k g2-2/k d2-2/k g3-2/k Same trade off point at
@(max{ 52 §2/k }) O(max{ 52 ' §2/k }) S:d%
[AISW17]

O(d?>2/k) \_ 0(d372/%) ) When § is constant




Parameters

= The highest estimated moment: K = O (

= The bucketing threshold hold: B = 0 (

= The overall sample complexity:

n=0(

B24¢?

d
):0(d31{4‘

€6

log(d) )
loglog(d)

€2 K?
)

1)=0(d3.(

loglog(d)

log(d)

)4

1
€6

|



Summary

= Spectrum is important because we care about multiple unitarily
invariant properties.

= We give an adaptive spectrum estimation algorithm using
unentangled measurements (in fact, only uniform POVM) and a sub-
polynomial factor fewer samples than the full state tomography.

= The idea is to first split the eigenvalues into small and large buckets without
disturbing the spectrum by too much.

= Then perform local moment matching on the small bucket.

= We provide numerical evidence in the setting of fully entangled
measurements that spectrum estimation can only improve over full
state tomography by a sub-polynomial factor.



