Beating full state tomography for unentangled spectrum estimation

Angelos Pelecanos UC Berkeley <u>Xinyu (Norah) Tan</u> MIT Ewin Tang UC Berkeley John Wright UC Berkeley

MIT Quantum CS Seminar April 2, 2025

Two fundamental quantum learning theoretic tasks

Given *n* samples/copies of an unknown *d*-dim mixed state ρ with spectrum $\alpha = (\alpha_1, \alpha_2, ..., \alpha_d)$ (sorted eigenvalues)

Why do we care about the spectrum?

Unitarily invariant properties:

- Purity of a state $tr(\rho^2)$
- Shannon and Rényi Entropy
- Entanglement entropy of a bipartite pure state

How big can *n* be? $g(d, \epsilon) \le n \le f(d, \epsilon)$

- **Upper bound**: give an algorithm that uses $n = f(d, \epsilon)$ samples
 - Quantum circuits + measurements
 - Classical post-processing using the measurement outcomes
- Lower bound: prove that <u>no</u> algorithm can learn the task with fewer than $n = g(d, \epsilon)$ samples

Measurements

- Fully entangled measurements
- Unentangled (single-copy) measurements
 - Adaptive vs non-adaptive algorithms
 - Uniform POVM: $\{d|u\rangle\langle u| \cdot du\}$ where du is the Haar measure over pure states $|u\rangle \in \mathbb{C}_d$

 $d \cdot \mathbb{E}_{|u\rangle \sim \text{Haar}} |u\rangle \langle u| = I$

Uniform POVM tomography algorithm

- Measure each copy of ρ with the uniform POVM $\{d|u\rangle\langle u| \cdot du\}$
- Set $\rho_i = (d + 1) \cdot |u_i\rangle \langle u_i| I$ where $|u_i\rangle$ is the *i*-th measurement outcome

• Output
$$\widehat{\rho} = \frac{1}{n}(\rho_1 + \dots + \rho_n)$$

Theorem [Krishnamurthy and Wright, GKKT20]: $\|\rho - \hat{\rho}\|_1 \le \epsilon$ if $n = 0\left(\frac{d^3}{\epsilon^2}\right)$.

What's known so far

• We can always use a state tomography algorithm to learn its spectrum:

•
$$\|\rho - \hat{\rho}\|_1 \le \epsilon \Rightarrow d_{\text{TV}}(\alpha, \hat{\alpha} = \text{eigenvalues}(\hat{\rho})) \le \epsilon$$

• Can we do better than full state tomography?

	Unentangled	Fully entangled
State tomography	$\Theta\left(\frac{d^3}{\epsilon^2}\right)$ [KRT14,CHL	$\Theta\left(\frac{d^2}{\epsilon^2}\right) \qquad [OW_{15,16}]$
Spectrum estimation	$\Omega\left(\frac{d^{3/2}}{\epsilon^2}\right) [CHLL_{22}]$	$\Omega\left(\frac{d}{\epsilon^2}\right) \qquad [OW_{15}]$

Mixedness testing: Test if spectre

Test if a state is maximally mixed, i.e. with spectrum $\left(\frac{1}{d}, \cdots, \frac{1}{d}\right)$, or ϵ -far from I_d/d

	Unentangled	Fully entangled
State tomography	$\Theta\left(\frac{d^3}{\epsilon^2}\right)$	$\Theta\left(\frac{d^2}{\epsilon^2}\right)$
Spectrum estimation (previously known)	$\Omega\left(\frac{d^{3/2}}{\epsilon^2}\right)$	$\Omega\left(\frac{d}{\epsilon^2}\right)$
Spectrum estimation (our results)	$O\left(d^3 \cdot \left(\frac{\log\log(d)}{\log(d)}\right)^4 \cdot \frac{1}{\epsilon^6}\right)$	$\Omega(d^{2-\gamma})$ for any constant $\gamma > 0$ (we give numerical evidence for constant ϵ)

An adaptive algorithm that uses asymptotically fewer samples in large ϵ -regime Spectrum learning can only improve over full state tomography by a sub-polynomial factor

Next

- Part I: Motivation and main results
- Part II: The classical analogue
 - The idea of (global) moment matching and why it fails
 - Local moment matching
- Part III: The quantum case

The classical analogues

- The spectrum α of ρ can be viewed as a probability distribution
- Let $\alpha = (\alpha_1, ..., \alpha_d)$ be an unknown (unsorted) distribution
 - Item *i* is sampled with probability α_i

Learn the distribution α	Learn the sorted distribution $\alpha^{\geq} = \operatorname{sort}(\alpha)$
 obtain an estimate <i>α̂</i> such that <i>d</i>_{TV}(<i>α</i>, <i>α̂</i>) ≤ <i>ε</i> State tomography 	 obtain an estimate <i>α</i>[≥] such that <i>d</i>_{TV}(<i>α</i>[≥], <i>α</i>[≥]) ≤ <i>ε</i> Spectrum estimation

Idea: Matching moments

• Let $\alpha = (\alpha_1, ..., \alpha_d)$ be an unknown (unsorted) distribution.

• The *k*-th moment of α : $p_k(\alpha)$: = $\sum_{i=1}^d \alpha_i^k$

Moment matching Obtain estimates \hat{p}_k for the first K moments: $\hat{p}_k \approx p_k(\alpha)$, for all $k \in [K]$ 2 Solve for a distribution $\hat{\alpha}$ with matching moments: $p_k(\hat{\alpha}) \approx \hat{p}_k$, for all $k \in [K]$

Formally: a feasibility linear program

Why global moment matching fails

- Uniformity testing: distinguish $\alpha = \left(\frac{1}{d}, \dots, \frac{1}{d}\right)$ or $\beta = \left(\frac{1}{2d}, \dots, \frac{1}{2d}, 0, \dots, 0\right)$
 - Given *n* samples $\{x_i\}_{i \in [n]}$ drawn from γ , output either $\gamma = \alpha$ or $\gamma = \beta$
- Standard algorithm: estimate $p_2(\gamma)$
- Standard unbiased estimator $c_2 \coloneqq \frac{1}{\binom{n}{2}} \sum_{i < j} \mathbf{1}[x_i = x_j]$ (collision statistics)
- For both $\gamma = \alpha$ and $\gamma = \beta$:
 - $p_2(\gamma) = \Theta\left(\frac{1}{d}\right)$
 - $|p_2(\alpha) p_2(\beta)| = \Theta\left(\frac{1}{d}\right)$
 - $\operatorname{Var}(c_2) = \Theta\left(\frac{1}{n^2 d}\right)$ is small

• Hence $n = O(\sqrt{d})$

New Task:

•
$$\alpha = \left(\frac{1}{2}, \frac{1}{2d}, \dots, \frac{1}{2d}\right)$$
 vs $\beta = \left(\frac{1}{2}, \frac{1}{d}, \dots, \frac{1}{d}, 0, \dots, 0\right)$

• $p_2(\gamma) = \Theta(1)$ and $\operatorname{Var}(c_2) = \Theta\left(\frac{1}{n}\right)$ is much bigger.

•
$$|p_2(\alpha) - p_2(\beta)| = \Theta\left(\frac{1}{d}\right)$$

• Hence $n = O(d^2)$

Why global moment matching fails

- The moments are dominated by large values, and they tend to "wash out" the small values.
- But capturing low-probability elements is important for estimating in TV distance.

- Alternatively, use O(1) samples to learn the index $i \in [d]$ for which $\gamma_i = \frac{1}{2}$.
- Then, use $O(\sqrt{d})$ samples to test if γ is uniform on $d/\{i\}$.

New Task:

•
$$\alpha = \left(\frac{1}{2}, \frac{1}{2d}, \dots, \frac{1}{2d}\right)$$
 vs $\beta = \left(\frac{1}{2}, \frac{1}{d}, \dots, \frac{1}{d}, 0, \dots, 0\right)$

• $p_2(\gamma) = \Theta(1)$ and $\operatorname{Var}(c_2) = \Theta\left(\frac{1}{n}\right)$ is much bigger.

•
$$|p_2(\alpha) - p_2(\beta)| = \Theta\left(\frac{1}{d}\right)$$

• Hence $n = O(d^2)$

Solution: local moment matching [HJW18]

Step 1: Bucketing

Requirements

- Draw *n* samples according to α . Denote the empirical distribution as \hat{p} .
- Assign items to two buckets based on *p*̂:

Small := { $i \in [d]$: $\hat{p}_i \in [0, B)$ } and Large := { $i \in [d]$: $\hat{p}_i \in [B, 1]$ }

• Directly output \hat{p}_i for $i \in Large$

Solution: local moment matching [HJW18]

• **Step 2:** <u>local</u> moment matching on the <u>small</u> bucket

- Draw <u>another</u> *n* samples according to α . Denote the empirical distribution as $\widehat{\beta}$.
- Use $\{\widehat{\beta}_i : i \in \text{Small}\}$ to obtain moment estimates

 $\widehat{\boldsymbol{p}}_k \approx \sum_{i \in \text{Small}} \alpha_i^k$ on the small bucket

Find a (subnormalized) distribution on [0, *B*) that matches the moment estimates \hat{p}_k

Next

- Part I: Motivation and main results
- Part II: The classical analogue
- Part III: The quantum case
 - Bucketing
 - Multiplicative-error moment estimation

Step 1: Bucketing

1 Use *n* copies of ρ to learn a projective measurement { $\Pi, \overline{\Pi} = I - \Pi$ }

- Π ($\overline{\Pi}$) projects onto the large (small) eigenvalues of ρ
- 2 Measure another *n* copies with $\{\Pi, \overline{\Pi}\}$
 - Receiving Π ($\overline{\Pi}$) outcome is as if we are sampling from the large (small) part of spectrum α
 - i.e. $\rho \mapsto \Pi \rho \Pi + \overline{\Pi} \rho \overline{\Pi}$

Uniform POVM tomography algorithm

- Measure each copy of ρ with the uniform POVM $\{d|u\rangle\langle u| \cdot du\}$
- Set $\rho_i = (d + 1) \cdot |u_i\rangle \langle u_i| I$ where $|u_i\rangle$ is the *i*-th measurement outcome

• Output
$$\widehat{\boldsymbol{\rho}} = \frac{1}{n}(\rho_1 + \dots + \rho_n)$$

Bucketing algorithm

• Perform the uniform POVM tomography algorithm using *n* copies of ρ and obtain $\hat{\rho}$

• Write
$$\widehat{\rho} = U \cdot \widehat{\alpha} \cdot U^{\dagger}$$

$$\hat{\alpha}_1 \geq \cdots \geq \hat{\alpha}_k \geq B > \hat{\alpha}_{k+1} \geq \cdots \geq \hat{\alpha}_d$$

• Output
$$\Pi = U \cdot (|1\rangle\langle 1| + \dots + |k\rangle\langle k|) \cdot U^{\dagger}$$

Step 1: Bucketing

1 Use *n* copies of ρ to learn a projective measurement { Π , $\overline{\Pi} = I - \Pi$ }

• Π ($\overline{\Pi}$) projects onto the large (small) eigenvalues of ρ

The large eigenvalues are accurately learned

• $d_{\mathrm{TV}}(\operatorname{spec}(\rho)_{\leq k}, \operatorname{spec}(\hat{\rho})_{\leq k}) \leq \epsilon$

The small eigenvalues are classified into the small bucket

• $\|\overline{\Pi}\rho\overline{\Pi}\|_{\mathrm{op}} \leq (1+\epsilon)B$

The full spectrum is not much disturbed

• $d_{\mathrm{TV}}(\operatorname{spec}(\rho), \operatorname{spec}(\Pi \rho \Pi + \overline{\Pi} \rho \overline{\Pi})) \leq \epsilon$

Eventually we set
$$B = O\left(\frac{\epsilon^2}{d} \cdot \left(\frac{\log(d)}{\log\log(d)}\right)^2\right)$$

Bucketing algorithm

• Perform the uniform POVM tomography algorithm using n copies of ρ and obtain $\hat{\rho}$

• Write
$$\widehat{\rho} = U \cdot \widehat{\alpha} \cdot U^{\dagger}$$

$$\quad \hat{\alpha}_1 \geq \cdots \geq \hat{\alpha}_k \geq B > \hat{\alpha}_{k+1} \geq \cdots \geq \hat{\alpha}_d$$

• Output
$$\Pi = U \cdot (|0\rangle\langle 0| + \dots + |k\rangle\langle k|) \cdot U^{\dagger}$$

Theorem: The bucketing algorithm satisfies the green requirements when

$$n = O(dB^{-2}\epsilon^{-2})$$

Step 2: local moment matching on the small bucket

- **1** Use *n* copies of ρ to learn a projective measurement { Π , $\overline{\Pi} = I \Pi$ }
 - Π ($\overline{\Pi}$) projects onto the large (small) eigenvalues of ρ
- 2 Measure <u>another</u> *n* copies with $\{\Pi, \overline{\Pi}\}$
 - Receiving Π ($\overline{\Pi}$) outcome is as if we are sampling from the large (small) part of spectrum α

• i.e. $\rho \mapsto \Pi \rho \Pi + \overline{\Pi} \rho \overline{\Pi} =: \sigma$ (a subnormalized quantum state)

• Bucketing $\Rightarrow \|\sigma\|_{op} \le (1 + \epsilon)B$

3 Use copies of σ to obtain "good" estimates for the moments tr(σ^k) for $k \in [K]$ 4 Perform local moment matching using the moment estimates

Side results on moment estimation

k-th moment estimator

• Measure each copy of ρ with the uniform POVM $\{d|u\rangle\langle u| \cdot du\}$

• Set
$$\rho_i = (d + 1) \cdot |u_i\rangle \langle u_i| - I$$
 where $|u_i\rangle$ is the *i*-th measurement outcome

Output
$$Z_k \coloneqq \frac{1}{n(n)}$$

$$(n-k+1)$$

$$\overline{k+1}$$
 distinct $\sum_{i_1,i_2,\ldots}$

• Additive error:
$$tr(\rho^k) \pm \delta$$

• Multiplicative error: $(1 \pm \delta) \cdot tr(\rho^k)$

Theorem: Z_k can estimate $\operatorname{tr}(\rho^k)$ to multiplicative error δ using $0\left(\max\left\{\frac{d^{2-2/k}}{\delta^2}, \frac{d^{3-2/k}}{\delta^{2/k}}\right\}\right)$ copies of ρ .

 $\operatorname{tr}(\overline{\rho_{i_1}\rho_{i_2}\cdots\rho_{i_k}})$

.,i_k∈[n]

Additive-error Rényi entropy estimation

• The quantum Rényi entropy of order
$$k: S_k(\rho) = \frac{1}{1-k} \log \operatorname{tr}(\rho^k)$$

$$\delta - \underline{\text{multiplicative}}_{\text{error approximation}} \longleftrightarrow \qquad \delta - \underline{\text{additive}}_{\text{approximation for}} \text{ error approximation for } \\ \delta - \underline{\text{additive}}_{k} \text{ error } \\ \delta - \underline{\text{a$$

Fully entangledUnentangled (our results)
$$\Theta\left(\max\left\{\frac{d^{1-1/k}}{\delta^2}, \frac{d^{2-2/k}}{\delta^{2/k}}\right\}\right)$$
 $O\left(\max\left\{\frac{d^{2-2/k}}{\delta^2}, \frac{d^{3-2/k}}{\delta^{2/k}}\right\}\right)$ Same trade off point at
 $\delta = d^{\frac{-k}{2k-2}}$ $\Theta(d^{2-2/k})$ $O(d^{3-2/k})$ $O(d^{3-2/k})$ When δ is constant

- The highest estimated moment: $K = O\left(\frac{\log(d)}{\log\log(d)}\right)$
- The bucketing threshold hold: $B = O\left(\frac{\epsilon^2 K^2}{d}\right)$
- The overall sample complexity:

$$n = O\left(\frac{d}{B^2\epsilon^2}\right) = O\left(d^3 \cdot \frac{K^4}{\epsilon^6} \cdot \frac{1}{\epsilon^6}\right) = O\left(d^3 \cdot \left(\frac{\log\log(d)}{\log(d)}\right)^4 \cdot \frac{1}{\epsilon^6}\right)$$

Summary

- Spectrum is important because we care about multiple unitarily invariant properties.
- We give an adaptive spectrum estimation algorithm using unentangled measurements (in fact, only uniform POVM) and a subpolynomial factor fewer samples than the full state tomography.
 - The idea is to first split the eigenvalues into small and large buckets without disturbing the spectrum by too much.
 - Then perform local moment matching on the small bucket.
- We provide numerical evidence in the setting of fully entangled measurements that spectrum estimation can only improve over full state tomography by a sub-polynomial factor.