Efficient approximate unitary designs from random Pauli rotations

Jeongwan Haah Stanford University Yunchao Liu Harvard University Xinyu (Norah) Tan MIT

QIP 2025 Raleigh, NC

What is a unitary t-design?

- An ϵ -approximate unitary t-design is a probability distribution ν on $SU(2^n)$
 - Statistically indistinguishable from the Haar measure
 - t-th moment of this distribution $\approx_{\epsilon} t$ -th moment of the Haar measure

■ Define a mixed unitary channel on t copies of n qubits $(\mathbb{C}^{2^n})^{\otimes t}$:

$$\mathcal{H}_{t,\mathbf{v}}: A \mapsto \mathbb{E}_{U \sim \mathbf{v}} U^{\otimes t} \cdot A \cdot (U^{\dagger})^{\otimes t}$$

- **Definition**: ν is an <u>exact</u> unitary t-design if $\mathcal{H}_{t,\nu} = \mathcal{H}_{t,\text{Haar}}$
- If $\mathcal{H}_{t,\mathbf{v}} = \mathcal{H}_{t,\text{Haar}}$ for all $t \geq 1$, then \mathbf{v} is the Haar measure on $SU(2^n)$

Approximate designs

■ Define a mixed unitary channel on t copies of n qubits $(\mathbb{C}^{2^n})^{\otimes t}$:

$$\mathcal{H}_{t,\mathbf{v}}: A \mapsto \mathbb{E}_{U \sim \mathbf{v}} U^{\otimes t} \cdot A \cdot (U^{\dagger})^{\otimes t}$$

Definition: ν is an ϵ additive error approximate unitary t-design if

$$\|\mathcal{H}_{t,\mathbf{v}} - \mathcal{H}_{t,\mathrm{Haar}}\|_{\diamond} \leq \epsilon$$

Approximate designs (multiplicative error)

■ Define a mixed unitary channel on t copies of n qubits $(\mathbb{C}^{2^n})^{\otimes t}$:

$$\mathcal{H}_{t,\mathbf{v}}: A \mapsto \mathbb{E}_{U \sim \mathbf{v}} U^{\otimes t} \cdot A \cdot (U^{\dagger})^{\otimes t}$$

■ **Definition**: ν is an ϵ multiplicative error approximate unitary t-design if

$$(1 - \epsilon) \cdot \mathcal{H}_{t,\text{Haar}} \leq \mathcal{H}_{t,\nu} \leq (1 + \epsilon) \cdot \mathcal{H}_{t,\text{Haar}}$$

Multiplicative error is <u>much stronger</u> than additive error

Most common recipe to generate unitary designs

A random walk model: circuits with *L* i.i.d. random gates

- $U_L \cdots U_2 U_1$ where each $U_i \sim v$
- $\mathbf{v}^{*L} = \mathbf{v} * \cdots * \mathbf{v}$
- How fast does it converge to a *t*-design?

Multiplicative error designs from spectral gaps

• Let ν be a distribution on $SU(2^n)$ for one step/walk

$$Q := \mathbb{E}_{U \sim \nu} (U \otimes \overline{U})^{\otimes t}$$

- The largest singular value of Q is $\lambda_1(Q) = 1$
- The spectral gap for ν is $\Delta(\nu, t) = 1 \lambda_2(Q)$
- Lemma [BHH12]: ν^{*L} is a unitary t-design with multiplicative error ϵ if

$$L = O\left(\frac{1}{\Delta(\nu, t)} \cdot \left(nt + \log(1/\epsilon)\right)\right)$$

	paper	model	spectral gap	<i>O</i> (1) multiplicative error design depth
	BHH12	Brickwork	$\Omega(n^{-1}t^{-9.5})$	$O(nt^{10.5})$
	Haferkamp22	Brickwork	$\Omega(n^{-1}t^{-4-o(1)})$	$O(nt^{5+o(1)})$
	HL <u>T</u> 24	Pauli rotations	$\Omega(t^{-1})$	$O(n \cdot \log(n) \cdot t^2)$
5pm	MPSY24	Permutation + Phase + Clifford	×	$O(\operatorname{poly}(n) \cdot t^2)$
4:3opm	CBBDHX24	Products of exponentiated sums of permutations	×	$O(\operatorname{poly}(n) \cdot t^2 \cdot \operatorname{polylog}(t))$
Short plenary on Thursday	y CHHLM <u>T</u> 24	Brickwork	$\widetilde{\Omega}(n^{-1})$	$\tilde{O}(nt) = O(nt \cdot (\log t)^7)$

- Explicit constants: the spectral gap is at least 1/(4t).
- The spectral gap holds for ALL $t \ge 1$. All other papers holds for $t \le 2^{\Theta(n)}$.
- Simple construction and proof: the entire paper is 21 pages.

Next

- Our construction
 - What is a random Pauli rotation?
- The spectral gap bound
- Proof sketch

Main result

- $\exp(i\theta P/2)$ with $\theta \sim [-\pi, \pi]$ and $P \sim \{I, X, Y, Z\}^{\otimes n} \setminus \{I^{\otimes n}\}$
 - $[-\pi,\pi]$ can be discretized
- With all-to-all connection, $\exp(i\theta P/2)$ can be implemented in depth $3 + 2 \cdot \log n$
- **Theorem:** For any integers $n, t \ge 1$,

$$\Delta_t := 1 - \lambda_2 \left(\mathbb{E}_{\theta, P} \left(e^{i\theta P/2} \otimes e^{-i\theta \bar{P}/2} \right)^{\otimes t} \right) \ge \frac{1}{4t}$$

As a result, $L = O(t^2n)$ random Pauli rotations

$$e^{i\theta_L P_L/2} \cdots e^{i\theta_2 P_2/2} e^{i\theta_1 P_1/2}$$

form O(1) multiplicative error unitary t-designs in circuit depth $O(L \log n)$.

Proof

$$\mathbb{E}_{\theta,P}(e^{i\theta P/2}\otimes e^{-i\theta \bar{P}/2})^{\otimes t}$$

Hermitian, $\lambda_1 = 1$

Our goal: upper bound λ_2

- Let us rewrite $\left(e^{i\theta P/2} \otimes e^{-i\theta \bar{P}/2}\right)^{\otimes t} = e^{i\theta \cdot J_P}$
- **Note 1:** For any Hermitian matrices *A* and *B*

$$e^{iA} \otimes e^{iB} = e^{i(A \otimes I + I \otimes B)}$$

So
$$J_P = \frac{1}{2} \sum_{j=1}^{t} (I \otimes I)^{j-1} \otimes (P \otimes I - I \otimes \overline{P}) \otimes (I \otimes I)^{t-j}$$
 eigenvalues: -2,0,2

- The eigenvalues of J_P are integers in [-t, t]
- Now average over θ : $\mathbb{E}_{\theta \sim [-\pi, \pi]} e^{i\theta \cdot J_P} = K_P$

the orthogonal projector onto the kernel of Jp

Proof

$$\mathbb{E}_{\theta,P} \left(e^{i\theta P/2} \otimes e^{-i\theta \bar{P}/2} \right)^{\otimes t} = \mathbb{E}_{P \in P_n} K_P$$

 K_P is the kernel projector of J_P

$$\mathbb{E}_{\theta,P} \left(e^{i\theta P/2} \otimes e^{-i\theta \bar{P}/2} \right)^{\otimes t} = \mathbb{E}_{P \in P_n} K_P$$

$$I_P = \frac{1}{2} \sum_{i=1}^t (I \otimes I)^{j-1} \otimes (P \otimes I - I \otimes \bar{P}) \otimes (I \otimes I)^{t-j}$$

Note 2: $\rho: U \mapsto (U \otimes \overline{U})^{\otimes t}$ is a $SU(2^n)$ Lie group representation.

 $\rho_*: P \mapsto J_P$ is the induced $\mathbf{su}(2^n)$ Lie algebra representation.

Both ρ and ρ_* can be decomposed into irreducible representations (irreps)

$$\lambda_2 \left(\mathbb{E}_{\theta, P} \left(e^{i\theta P/2} \otimes e^{-i\theta \bar{P}/2} \right)^{\otimes t} \right) = \max_{\text{nontrivial } \tau \in \rho} \lambda_1 \left(\mathbb{E}_{P \in P_n} K \left(\tau_*(P) \right) \right)$$

Proof

$$\lambda_{2}\left(\mathbb{E}_{\theta,P}\left(e^{i\theta P/2}\otimes e^{-i\theta\bar{P}/2}\right)^{\otimes t}\right) = \max_{\text{nontrivial }\tau\in\rho}\lambda_{1}\left(\mathbb{E}_{P\in\mathbb{P}_{n}}K\left(\tau_{*}(P)\right)\right)$$

- Note 3: For any non-zero Hermitian matrix H, the kernel projector $K(H) \leq I \frac{H^2}{\|H\|_{\infty}^2}$
- So $K(\tau_*(P)) \le I \frac{(\tau_*(P))^2}{t^2}$
- Note 4: For each irrep τ_* of su(2ⁿ),

 $\sum_{P\in\mathbb{P}_n} \tau_*(P)^2 \propto I$ is known as the **quadratic Casimir** operator.

- We know exactly which irreps occur in ρ_*
- Given any irrep τ_* , we know the exact scalar in the quadratic Casimir operator
- Lemma: For any non-trivial irrep $\tau \in \rho$, $\mathbb{E}_{P \in P_n} \tau_*(P)^2 \ge \frac{t}{4}I$ Q.E.D.

Summary

- Random circuits from $O(t^2n)$ random Pauli rotations give a constant multiplicative error unitary t-design.
- Each $\exp(i\theta P/2)$ can be implemented in $O(\log n)$ depth.
- All constants are nice and explicit.
- Our result holds for all $t \ge 1$.
- Simple proof of the spectral gap.