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Kassabov’s Backbone: an efficient implementation of Kassabov’s
expander expander on the alternating group




I. Incompressibility

What does “a circuit is incompressibile” mean?

= The circuit complexity of U, C5(U): = the minimum number of “small” gates to
implement U approximately (in operator norm).

= A unitary operator U € U(2")
= A Boolean function f:{0,1}" - {0,1}
= A reversible classical circuit w € Sym(2") or Alt(2™)
= Suppose I tell you that U can be constructed with gates Uy, U,, -+, U; .
= ie,U=U, - U,U; (acircuit description).
= Canyou tell me if U can be compressed?

= j.e., does there exist another decomposition of U using < L gates?

= [f U cannot be compressed, then Cs(U) = L.



I. Incompressibility

How hard is circuit compression?

= Proving circuit lower bounds for specific functions is an extremely hard problem!

= An easier problem: what is the circuit complexity of a uniformly random circuit?

History e

Circuit complexity goes back to Shannon in 1949,/? who proved that almost all Boolean functions on n variables
require circuits of size ©(2"/n). Despite this fact, complexity theorists have so far been unable to prove a superlinear
lower bound for any explicit function.

---- “A random function is complex.”

= Similarly...
= A uniformly random 2™ X 2" permutation is complex.

= A Haarrandom 2" X 2™ unitary is complex.



I. Incompressibility

An intermediate question...

= Suppose I give you a random circuit U generated by L gates, can you compress U?

= Random circuit (a random walk model)

= The qubit/bit connectivity can be arbitrary (e.g. brickwork, all-to-all connection, ...)

Quantum world: apply a Haar random 2-qubit gate

= Ateachstep {

Classical world: apply a uniformly random 3-bit permutation gate
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I. Incompressibility

An intermediate question...

= Suppose I give you a random circuit U generated by L gates, can you compress U?
= Random circuit (a random walk model)

= The qubit/bit connectivity can be arbitrary (e.g. brickwork, all-to-all connection, ...)

Quantum world: apply a Haar random 2-qubit gate

= Ateachstep {

Classical world: apply a uniformly random 3-bit permutation gate

= Theorem 1: A random quantum circuit on n qubits with L < 0(2™/?) gates

cannot be implemented approximately by any quantum circuit with fewer than
L/poly(n) gates.

---- “Random quantum circuits are incompressibile.”



I. Incompressibility

Brown-Susskind conjecture

= Theorem 1: A random quantum circuit on n qubits with L < 0(2™/?) gates
cannot be implemented approximately by any quantum circuit with fewer than

L/poly(n) gates.

---- “Linear growth of robust quantum circuit complexity”
exp(£2(n))

U(t) = e tH!
H: a generic time-
independent local

Hamiltonian (that
models black holes)

complexity

circuit size (time)
Figure: 1912.04297



I. Incompressibility

What is a unitary t-design?

= A e-approximate unitary t-design is a probability distribution on U(2")

= Statistically indistinguishable from the Haar measure

= f-th moment of this distribution =, t-th moment of the Haar measure

& @

= A random circuit with L i.i.d. gates U; ~ v
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A recipe to create a unitary t-design using

the random circuit model . S -
Vv v v

= Specify a generating set that is universal

ASL = 0, V*V* %V = Ufaar

= (alculate the convergence rate L := L(n, t)

Ltimes



I. Incompressibility

Incompressibility follows from “linear” unitary t-designs

= Lemma: A random unitary sampled from a t-design has circuit complexity Q(t).

= If your t-design can be constructed using O(n“t) random gates,

= ji.e.,arandom circuit U with L gates isa Q(L/n")-design.

= Bylemma, w.h.p., Cs(U) = Q(L/n%)

= Theorem 2 (linear unitary t-designs):

Foranyn > 2,t < ©(2™/?), 2-local all-to-all random quantum circuits with
L = 0(tn*) random gates form approximate unitary t-designs with a constant

multiplicative error.
O(t - poly(n)) also holds for any connected architecture and
any universal generating Sel (containing inverses and algebraic matrix entries).



[. Incompressibility II. Spectral gaps

t-wise independent permutations (= permutation t-designs)

= A distribution v on Alt(2") is t-wise independent permutations if

= Forany distinct bitstrings, x4, -, x; € {0,1}"

= Sample o ~ v, the distribution of (6(xy), -+, d(x;)) is the same as if & ~,;r Alt(2"™)

= Forany distinct bitstrings x;, -+, x; € {0,1}" and any distinct bitstrings

}71;"';)’1: E {Oll}nl
UHTV[U(M) =y1,,0x) =y = Pr if[U(x1) =y1,,0(xe) =y

~



[. Incompressibility II. Spectral gaps

Multiplicative-error designs from spectral gaps

= Given a distribution v on Alt(2"), the spectral gap for v is

gap(v,t):=1— ||IEU~V ot — Es—unif O'®t”09

The essential norm of v =g(v, t)

= gvht) < glv, )t
» Lemma: v*! is a permutation t-design with multiplicative error € when
L = 0(gap(v,t)~1 - (nt +log(1/¢€)))

Independent from ¢!

= To prove our main theorems, it suffices to show that gap(v,t) = 1/poly(n).



[. Incompressibility II. Spectral gaps

Multiplicative-error designs from spectral gaps

= Given a distribution v on SU(2"), the spectral gap for v is
gap(v,t) =1 = |[Ey~y (U @ D)®* = Eypraar(U @ D)®|

The essential norm of v := g(v, t)

= gvht) < gv, )"
» Lemma: v*! is a unitary t-design with multiplicative error € when
L = 0(gap(v,t)~1 - (nt +log(1/¢€)))

Independent from ¢!

= To prove our main theorems, it suffices to show that gap(v,t) = 1/poly(n).



[. Incompressibility II. Spectral gaps

“PFC” ensemble

Simple constructions of linear-depth ¢-designs
and pseudorandom unitaries arXiv: 2404.12647

Tony Metger!, Alexander Poremba?, Makrand Sinha®, and Henry Yuen*

/ C: Arandom Clifford \ / F: Arandom phase gate\ /P: A random permutation\

F = Z (=1 @ |v)(v| P = z [T (v) V|
ve{0,1}n ve{0,1}n

\ / \ where f:{0,1}" - {0,1} / \ where © € Sym(2™) /

= [MPSY24]: The “PFC” ensemble forms an additive-error t-design forany t < 0(2™2).



[. Incompressibility II. Spectral gaps

Let us modify “PFC”

= [MPSY24]: The “PFC” ensemble forms an additive-error t-design forany t < 0(2"/?).

Q To prove t-independent spectral gaps for 2-local random quantum circuits:

1. Show an initial spectral gap for “PFC”
2. Break “PFC” into “baby steps of local gates”
3. Analyze the spectral gap of one “baby step”

4. Relate it to the spectral gap of 2-local random quantum circuits

t
271/2)'

= Lemma: The spectral gap for the “CPFPC” ensembleis 1 — 0



[. Incompressibility II. Spectral gaps

1. Show an initial spectral gap for “CPFPC”
2. Break “CPFPC” into “baby steps of local gates”
3. Analyze the spectral gap of one “baby step”

4. Relate it to the spectral gap of 2-local random quantum circuits

= (: Replace with any 2-design with a constant multiplicative error.
= P: Kassabov’s expander on the alternating group.

= F: Mixing in an abelian group is slow...
= Let usgetrid of F!
= Simulate F by PZ; P71



[. Incompressibility II. Spectral gaps

Step 3: The “CPZPC” ensemble

1. Show an initial spectral gap for “CPFPC”

2. Break “CPFPC” into “baby steps of local gates”
3. Analyze the spectral gap of one “baby step”

4. Relate it to the spectral gap of 2-local random quantum circuits

_ = C: 0(n) layers of brickwork random 2-qubit gates

P: 0(n®) random 3-qubit gates due to Kassabov (roughly)
A babystep 4 =

P: O(n3) random 3-qubit gates due to Kassabov (roughly)

= (C: 0(n) layers of brickwork random 2-qubit gates

Lemma: For t < 0(2™?), the spectral gap of “a baby step” is constant.



[. Incompressibility II. Spectral gaps

1. Show an initial spectral gap for “CPFPC”

2. Break “CPFPC” into “baby steps of local gates”
3. Analyze the spectral gap of one “baby step”

4. Relate it to the spectral gap of 2-local random quantum circuits

Random quantum circuits are approximate
unitary t-designs in depth O (nt5+0(1))

% Jonas Haferkamp arXiv: 2203.16571

Detectability lemma
Quantum union bound



[. Incompressibility II. Spectral gaps

1. Show an initial spectral gap for “CPFPC”

2. Break “CPFPC” into “baby steps of local gates”
3. Analyze the spectral gap of one “baby step”
4. Relate it to the spectral gap of 2-local random quantum circuits

Lemma: Let G4, G, -**, G,,, be subgroups of U(2"), each of which acts on only
constantly many qubits. Then,

gap(unif(G,) * unif(G,) * -+ * unif(G,,),t) = 6

!

gap(“2—local all-to—all”, t) = Q(5/m)

Theorem: For t < 0(2™/?), the spectral gap of 2-local all-to-all random quantum
circuits is Q(n~3).



[. Incompressibility II. Spectral gaps I1I. Kassabov’s expander

An expander on the alternating group

= An infinite family of { (Alt(N), Sy = a generating set for Alt(N)) } N

= The family of the associated Cayley graphs is “expanding’.

ab a’b

Cayley graph of the dihedral group D,
generated by a and b

Figure: Wikipedia

b a’b

= The spectral gaps of the associated adjacency matrices are “nicely” bounded.

= 1= ||Bpos, PP — Eponieny PP = Q(USNITY)



[. Incompressibility II. Spectral gaps I1I. Kassabov’s expander
|

Two papers by Martin Kassabov

Home > Inventiones mathematicae > Article Home > Inventiones mathematicae > Article

Symmetric groups and expander graphs Universal lattices and unbounded rank
Published: 23 August 2007 expan ders

Volume 170, pages 327-354,(2007) Cite this article Published: 23 August 2007

. Volume 170, pages 297-326,(2007) Cite this article
Martin Kassabov 9

Martin Kassabov 9

Abstract
Abstract

We construct explicit generating sets S ,and S, of the alternating and the symmetric

groups, which turn the Cayley graphs C(Alt( n) . Sh ) anil C(Sym( n), Sn ) into a family of We study the representations of non-commutative universal lattices and use them to

compute lower bounds of the t-constant for the commutative universal lattices G 4 x =SL 4
bounded degree expanders for all n. »

(Z[x 1,...,x 1), for d=3 with respect to several generating sets.

. As an application we show that the Cayley graphs of the finite groups SL3;, (IF,, ) can be
But can the generating set be So, the spectral ’P oS ATy ol grips s ()
« . ) »o made expanders with a suitable choice of generators. This provides the first example of
efficie Htly 1mplemented ¢ gaps are constant. expander families of groups of Lie type, where the rank is not bounded and provides
T T counter examples to two conjectures of A. Lubotzky and B. Weiss.

I I
An explicit generating set of constant size
that is rapidly mixing, of Alt(N) for each N.




[. Incompressibility II. Spectral gaps I1I. Kassabov’s expander
|

Efficient implementation of the generators

= An infinite family of { (Alt(N), Sy = a generating set for Alt(N)) } .

= For each N = 2", can each generator in S,; be implemented with poly(n)
“simple” gates?

= Theorem (Kassabov’s generators are short reversible circuit):

For any n > 1, each generator in S,» can be implemented on n bits using O (n)
NOT, controlled-NOT, and Toffoli gates without any ancilla bit.



= We prove that random quantum circuits form multiplicative-error unitary t-
designs with O(t - poly(n)) gates

= Convert the “PFC” ensemble into “baby steps of local gates”

= Prove a t-independent spectral gap for a baby step

= “P”is based on an efficient implementation of Kassabov’s expander on the alternating group

= Linear unitary t-designs = linear growth of robust quantum circuit complexity
(aka. random circuits are incompressible)
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