$5 / 3 / 2024$
Efficient approximate unitary designs from random Pauli rotations with Jeongwan Hash. Yunchaw Lin

Outline: (1) Unitary $t$-design defn \& spectral gap
(2) Construction \& results
(3) Lie group $S U(N)$
(4) Lie algebra $\operatorname{su}(N)$
(5) Proof : $\operatorname{su}(2)$
(6) Proof: $\operatorname{su}\left(2^{n}\right)$
(7) Discussion
(1) An exact/approx. unitary $t$-design:
a distribution on $\operatorname{su}(N)$ which matches exactly/ approximately with the Haar distribution on all moments up to $t$ efficient $Q$. circuits

$$
\begin{aligned}
& \qquad \mathcal{L}(t)(v): \eta \mapsto \underset{y}{\mathbb{E}} U^{\Delta t} \cdot \eta \cdot U^{+, \Delta t} \\
& \text { the channel acts on } \\
& t \text { copiestribation of the Hilbert space on } \operatorname{suc}\left(2^{n}\right)
\end{aligned}
$$

additive error $\left\|\mathcal{L}_{t, \text { Haar }}-\mathcal{L}_{t, \nu}\right\|_{\diamond} \leqslant \varepsilon$
multiplicative error $(1-\varepsilon) \mathcal{H}_{t, \text { Haar }} \preccurlyeq \mathcal{H}_{t, v} \leqslant(1+\varepsilon) \mathcal{L}_{t, \text { Haar }}$ - stronger
$\rightarrow$ connect to robust quantum circuit complexity
spectral gap

$$
\begin{aligned}
& \checkmark \text { vectorization of the channel }
\end{aligned}
$$

why spectral gap?

$$
\begin{aligned}
& \text { Note }(A-B)^{2}=A^{2}+B^{2}-2 A B{ }_{2 A}=B^{2}-A \\
& \begin{array}{l}
\mathbb{E} \\
u \sim v^{* 2} \\
u^{\infty t, t} \quad \text { repeat twice } \\
u=u_{1} u_{2} \quad u_{1}, u_{2} \sim v
\end{array} \\
& \|\underbrace{\mathbb{E} u^{\otimes \Delta t, t}}_{A}-\underbrace{\mathbb{E} u^{\infty \Delta t, t}}_{B^{k}}\|_{\infty} \leqslant(1-\Delta)^{k}
\end{aligned}
$$

Model: random walks on $\operatorname{SU}\left(2^{n}\right)$
$y v$ defines one step of a random walk
$2 /$ take $k$ steps to mix
( $k$ independent draws, then multiply $k$ unitaries together) spectral gap quantifies how fast the walk mixes

$$
\text { \#steps }=0\left(\frac{1}{\frac{\text { gap }}{\frac{1}{\Delta}}} \cdot(n t+\log (1 / \varepsilon))\right.
$$

spectral gap implies both additive \& multiplicative designs
(2) Construction \& results:

- Simple construction
- nice constants
- multiplicative error $b c$ we use a spectral gap argument
- any moment $t>0$ all other $t$-design analysis is limited to a certain regime

$$
\text { e.g. } t=0\left(2^{n}\right), t=0\left(2^{n \log n}\right), t=0\left(n^{1 / 2}\right)
$$

- simple proof as long as you know su(2) rep theory

Each step sample $\exp \left(i \frac{\theta}{2} p\right)$ where $\theta \stackrel{\text { unif }}{\sim}[-\pi, \pi] \rightarrow$ can be discretired

$$
P \text { unit } P_{n}=\{1, X, y, Z\}^{\infty n} \backslash\left\{I^{\infty n}\right\}
$$

$\mapsto Q$. Does anyone immediately knows now
Assume all-to-all connection. $\exp \left(i \frac{\theta}{2} p\right)$ can be implemented $w / \operatorname{depth} O(\log n)^{n}$

(1) use $\leq 2 n$ H\&S to convert $P$ into $\{I, x\}^{\text {on }}$
(depth 2)
(2) $\boldsymbol{\sigma}^{x}{ }_{x}^{x} \nabla^{-}=\begin{aligned} & x \\ & 1\end{aligned}$

CNOT of depth O(logn)

Theorem: $\forall n, t \geqslant 1$

$$
(*)=\left\|\underset{\theta \sim(-\pi, \pi)}{\mathbb{E}} \underset{p \sim p_{n}}{\mathbb{E}} \exp \left(i \frac{\theta}{2} p\right)^{\otimes t} \otimes \exp \left(-i \frac{\theta}{2} \bar{p}\right)^{\otimes t}-\underset{u \sim H_{\text {lar }}}{\mathbb{E}} U^{\otimes t, t}\right\|_{\infty} \leqslant 1-\frac{1}{4 t}-\frac{1}{4^{n}-1}
$$

By sampling $k$ random Pauli rotations, ie. $\exp \left(i \frac{\theta_{k}}{2} p_{k}\right) \cdots \exp \left(i \frac{\theta_{1}}{2} p_{1}\right)$ $(*) \leqslant 1-\frac{1}{4 t}$ directly implies
(1) $\varepsilon$-additive error $t$-designs if $k \geqslant 4 t\left(\ln 2 \cdot n t+\log \left(\frac{1}{\varepsilon}\right)\right)$
(2) $\varepsilon$-multiplicative

$$
\begin{aligned}
k & \geqslant 4 t\left(\ln 8 \cdot n t+\log \left(\frac{1}{\varepsilon}\right)\right) \\
\text { Overall depth } & =0\left(\log n \cdot t\left(n t+\log \left(\frac{1}{\varepsilon}\right)\right)\right)
\end{aligned}
$$

Previous best spectral gap [Haf22] $\Omega\left(t^{-4-0(1)}\right)$
this wonk $\Omega\left(t^{-1}\right)$
(3) Lie group $S U(N)$
call this $\tau_{t}: U \longmapsto U^{\otimes t} \otimes \bar{U}^{\otimes t}$ is a $\operatorname{SU}\left(2^{n}\right)$ representation tensor product $\quad$ group rep: $\tau_{t}(u) \cdot \tau_{t}(v)=\tau_{t}(u \cdot v)$ representation $\tau_{t}$ is reducible $\Rightarrow$ decompose into irreps

Hence: $(*)=\max _{\rho \in \tau_{t}}\left\|\mathbb{E}_{\theta, p}^{\mathbb{E}} \rho\left(\exp \left(i \frac{\theta}{2} p\right)\right)-\underset{u \sim H_{\text {Hor }}}{\mathbb{E}} \rho(u)\right\|_{\infty}$
$C \rho$ is a su( $\tau^{n}$ ) irreps that show up in $\tau_{t}$
Prop: $: \mathbb{E} \rho(u)=\left\{\begin{array}{lc}1 & \text { if } \rho \text { is the trivial irrep } \\ 0 & \text { non-trivial }\end{array}\right.$
Pf. Schur's Lemma

$\uparrow$
which $\rho$ occur in $\tau_{t}$ is well-undestood each $\rho$ is labeled by a Young diagram
(4) Lie algebra $\operatorname{su}(N)$

I algebra in the exponent of a unitary
$\exp (i H)$

$$
\begin{aligned}
\Rightarrow \operatorname{su}(N) & =\{i H: H \text { Hermitian }\} \text { if } N=2^{n} \\
& =\mathbb{R}-\operatorname{span}\left\{i P: P \in P_{n}\right\}
\end{aligned}
$$

Def: $J: \operatorname{su}(N) \rightarrow u(M)$ is an $\operatorname{su}(N)$ representation

$$
\begin{aligned}
& {[J(A) \cdot \stackrel{\Downarrow}{J}(B)]=J([A, B])_{\text {commutator }} / \text { Lie bracket }} \\
& J \text { linear map }
\end{aligned}
$$

\& Commutative diagram : $\forall N \times N$ Hermitian matrix $H$

$$
\begin{aligned}
& i H \in \operatorname{su}(N) \\
& \exp \mid \\
& \exp (i H) \in \operatorname{SU}(N) \\
& i H \in \operatorname{su}(N) \\
& \exp \mid \\
& \exp (i H) \in \operatorname{SU}(N) \xrightarrow[\rho \text { Lie group req }]{ }
\end{aligned}
$$

Lie gray represatation

$$
\begin{aligned}
& i H \in \operatorname{su}(N) \xrightarrow{\rho_{*} \rightarrow \text { induced Lie }} u(M)
\end{aligned}
$$

Key: $\forall \operatorname{SU}(N)$ representation $\rho, \forall N \times N$ Hermitian $H$

$$
\rho(\exp (i H))=\exp \left(i \rho_{*}(H)\right)
$$

egg. recall $\tau_{2}(u)=(u \oplus \bar{u})^{\otimes 2}$

$$
\begin{aligned}
& \tau_{2 *}(H)=(H \otimes I-I \otimes \bar{H}) \otimes I \otimes I+I \otimes I \otimes(H \otimes I-I \otimes \bar{H}) \\
& \tau_{t *}(H)=\sum_{j=0}^{t-1}(I \otimes I)^{\infty j} \otimes(H \otimes I-I \otimes \bar{H}) \otimes(I \otimes I)^{t-j-1}
\end{aligned}
$$

$Q$ : what are the eigenvalues of $\hat{\tau}_{ \pm}\left(\frac{P}{2}\right) \quad P \in P_{n}$ ?
Hence: $(*)=\max _{\rho}\left\|\underset{\theta, P}{\mathbb{E}} \exp \left(i \rho_{*}\left(\frac{\theta}{2} p\right)\right)\right\|_{\infty}$

$$
=\max _{\rho}\left\|\frac{\mathbb{E}}{\theta, P} \exp \left(i \theta \rho_{*}\left(\frac{p}{2}\right)\right)\right\|_{\infty}
$$

Lemma 1: eigenvalues of $\rho_{*}\left(\frac{p}{2}\right)$ are integers in $[-t, t]$
$\rho_{*}$ is a subrep .f $\tau_{t_{*}}+\tau_{t *}$ only has integer evals in $[-t, t]$
Lemma 2: eigenspectrum of $\rho_{*}\left(\frac{P}{2}\right)$ is independent from $P \in P_{n}$ different Paulis are conjugated by a Clifford unitary

$$
\begin{aligned}
& \quad \int_{-\pi}^{\pi} e^{i \theta k} d \theta= \begin{cases}0 & k \text { won-2ero integer } \\
1 & k=0\end{cases} \\
& =\max _{\rho}\left\|\frac{\mathbb{E}}{\underset{\sim}{E}} \underset{*}{\operatorname{Ker}}\left(\rho_{*}\left(\frac{p}{2}\right)\right)\right\|_{\infty}
\end{aligned}
$$ $\forall$ nonzero Hermitian $H$ $\operatorname{ker} H \preccurlyeq I-\frac{H^{2}}{\|H\|_{\infty}^{2}}$ The only inequality!! also $\forall p \in P_{n},\left\|\rho_{*}\left(\frac{p}{2}\right)\right\|_{\infty} \leqslant t$

Prop: $S=\sum_{P \in P_{n}}\left[\rho_{*}\left(\frac{p}{2}\right)\right]^{2} \quad \propto I$ : Anyone wants to guess Proof sketch: $S$ commutes with $\rho_{*}(P) \forall P \in P_{n}+$ Schur's Lemma
(5) $n=1 \quad$ sun)
$\forall$ irrep $\rho_{\text {of }} \operatorname{su}(2): \quad J_{x}=\rho_{*}\left(\frac{x}{2}\right) \quad K_{x}=\operatorname{Ker}\left(\rho_{*}\left(\frac{x}{2}\right)\right)$

$$
\begin{aligned}
\left\|\underset{p \in P_{1}}{\mathbb{E}} K_{p}\right\|_{\infty} & =\frac{1}{3}\left\|K_{x}+K_{y}+K_{z}\right\|_{\infty} \quad K_{x} \leqslant I-\frac{J_{x}^{2}}{e^{2}} \\
& \leqslant \frac{1}{3}\left\|3 I-\frac{\left(J_{x}^{2}+J_{y}^{2}+J_{z}^{2}\right)}{l^{2}}\right\|_{\infty}
\end{aligned}
$$

where $l=0, \frac{1}{2}, 1, \frac{3}{2}, \cdots$
$J_{x}$ has spectrum $l, l-1, l-2, \cdots, l$

$$
\begin{aligned}
& \quad J_{x}^{2}+J_{y}^{2}+J_{z}^{2}=l(l+1) \cdot I \\
& =1-\frac{1}{3} \cdot \frac{l^{2}+l}{l^{2}} \leqslant \frac{2}{3}
\end{aligned}
$$

Hence (*) $\leqslant \frac{2}{3}$
For su(2), we can calculate (*) ie., the spectral gap exactly
Back to the general case:

$$
(*)=\max _{\rho}\left\|\underset{p \in P_{n}}{\mathbb{E}} K_{p}\right\|_{\infty} \leqslant 1-\min _{\rho}\left\|\frac{\underset{p \in P_{n}}{\mathbb{E}} J_{p}^{2}}{l^{2}}\right\|_{\infty}
$$

Ken $H \leqslant I-\frac{H^{2}}{\|H\|_{\infty}^{2}}$

$$
\left\|J_{p}\right\|_{\infty}=l \leqslant t
$$

$\ell_{\infty}-$ norm is kept because

$$
\sum_{p} J_{p}^{2} \propto I
$$

Goal: Prove $\left\|\underset{P \in P_{n}}{\mathbb{E}}\left[\rho_{*}\left(\frac{\rho}{2}\right)\right]^{2}\right\|_{\infty} \geqslant \frac{l}{4} \quad \forall \rho \in \tau_{t}$ nontrivial
$\Downarrow$

$$
\text { (*) } \leqslant 1-\frac{1}{4 t}
$$

(6) $\operatorname{su}\left(2^{n}\right)$ :
$\forall$ irrep $\rho$ of $\operatorname{su}\left(2^{n}\right), \underset{p \in p_{n}}{\mathbb{E}}\left[\rho_{*}\left(\frac{p}{2}\right)\right]^{2}$ has explicit formula
Nevertheless, let us see a simple counting argument from $\operatorname{su}(2)$
Suppose $\quad J_{z}|v\rangle=l|v\rangle \quad l=\left\|J_{z} \cdot\right\|_{\infty}$

$$
\Rightarrow\langle v| J_{z_{1}}^{2}|v\rangle=e^{2}
$$

Consider all $Q, W \in \rho_{n}$ s.t. $\left\{Q, W, Z_{1}\right\}$ forms su(l)-subalgebra

$$
\text { egg. } Z I^{\infty n}, X \ddot{-}, Y-
$$

There are $4^{n-1}$ such su(2)- sub algebras
For each triple

$$
\langle v| J_{21}^{2}+J_{a}^{2}+J_{w}^{2}|v\rangle=l(l+1)
$$

Hence, $\langle v| J_{Q}^{2}+J_{\omega}^{2}|v\rangle=e$
Hence, $\langle v| \sum_{p \in \rho_{n}} J_{p}^{2}|v\rangle \geqslant e_{11}^{2}+4^{n-1} \cdot l$

$$
\Rightarrow\left\|\underset{p \in P_{n}}{\mathbb{E}} J_{p}^{2}\right\|_{\infty} \geqslant \frac{1}{4} l+\frac{1}{4^{n}-1} \cdot l^{2}
$$

